Answer:
14160 kg/m^3
Explanation:
First of all, we need to find the volume of the cylinder.
The volume of the cylinder is given by:
[tex]V=\pi r^2 h[/tex]
where:
[tex]r=\frac{d}{2}=\frac{42.0 mm}{2}=21.0 mm=0.021 m[/tex] is the radius
[tex]h=51.0 mm=0.051 m[/tex] is the height
Substituting, we find
[tex]V=\pi (0.021 m)^2 (0.051 m)=7.1 \cdot 10^{-5} m^3[/tex]
And the density is given by
[tex]d=\frac{m}{V}[/tex]
where m = 1 kg is the mass. Substituting, we find
[tex]d=\frac{1 kg}{7.1\cdot 10^{-5} m^3}=14,160 kg/m^3[/tex]