Car A (1750 kg) is travelling due south and car B (1450 kg) is travelling due east. They reach the same intersection at the same time and collide. The cars lock together and move off at 35.8 km/h[E31.6 S]. What was the velocity of each car before they collided?

Respuesta :

Consider the east-west direction along x-axis and north-south direction along y-axis. In unit vector notation, velocities can be given as

[tex]\underset{V_{A}}{\rightarrow}[/tex] = velocity of car A before collision = 0 i - [tex]V_{A}[/tex] j

[tex]\underset{V_{B}}{\rightarrow}[/tex] = velocity of car B before collision = [tex]V_{B}[/tex] i + 0 j

[tex]\underset{V_{AB}}{\rightarrow}[/tex] = velocity of combination after collision = (35.8 Cos31.6) i - (35.8 Sin31.6) j = 30.5 i - 18.8 j

[tex]M_{A}[/tex] = mass of car A = 1750 kg

[tex]M_{B}[/tex] = mass of car B = 1450 kg

Using conservation of momentum

[tex]M_{A}[/tex]  [tex]\underset{V_{A}}{\rightarrow}[/tex] + [tex]M_{B}[/tex]  [tex]\underset{V_{B}}{\rightarrow}[/tex] = ([tex]M_{A}[/tex] + [tex]M_{B}[/tex]) ( [tex]\underset{V_{AB}}{\rightarrow}[/tex] )

(1750) (0 i - [tex]V_{A}[/tex] j) + (1450) ([tex]V_{B}[/tex] i + 0 j) = (1750 + 1450) (30.5 i - 18.8 j)

(1450) [tex]V_{B}[/tex] i - (1750) [tex]V_{A}[/tex] j = 97600 i - 60160 j

Comparing the coefficient of "i" and "j" both side

(1450) [tex]V_{B}[/tex] = 97600    and - (1750) [tex]V_{A}[/tex] = - 60160

[tex]V_{B}[/tex] = 67.3 km/h        and  [tex]V_{A}[/tex] = 34.4 km/



Ver imagen JemdetNasr