Respuesta :
Answer:
[tex]\frac{8\sqrt{y} }{x}[/tex]
Step-by-step explanation:
We are given the following expression and we are to simplify it:
[tex] \sqrt {\frac {128x^5y^6} {2x^7y^5} } [/tex]
To make it easier to solve, we can also write this expression as:
[tex] \sqrt {\frac{128}{2} * \frac {x^5} {x^7} * \frac {y^6} {y^5}} [/tex]
Now we will cancel out the like terms to get:
[tex] \sqrt {64*\frac{1} {x^2}*y } [/tex]
Taking the square root of the terms to get:
[tex] 8*\frac {1}{x} .\sqrt{y} [/tex]
[tex]\frac{8\sqrt{y} }{x}[/tex]
Answer:
[tex]\frac{8\sqrt{y}}{x}[/tex]
Step-by-step explanation:
[tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex]
we have division inside the square root .
LEts simplify it
128 divide by 2 is 64
use property of exponents to simplify the exponents
[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
[tex]\frac{x^5}{x^7} =x^{5-7}=x^{-2}[/tex]
[tex]\frac{y^6}{y^5} =y^{6-5}=y[/tex]
[tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex]
[tex]\sqrt{\frac{64x^{-2}y}{1}}[/tex]
To make the exponent positive move x to the denominator
[tex]\sqrt{\frac{64y}{x^2}}[/tex]
Now we take square root
square root (64) is 8
square root of x^2 is x
[tex]\frac{8\sqrt{y}}{x}[/tex]