Find cos if sin = -2/3 and falls in quadrant 3.

a. cos = 5 squared/3
b. non of these
c. cos= (2)5 squared/5
d. cos = - 5 squared/3
c. cos = - (2)5 squared/5

Respuesta :

Answer:

a. [tex]cos \ x=\frac{\sqrt{5} }{3}[/tex].

Step-by-step explanation:

Given sin x= -2/3.

Squaring both sides, we get

[tex]sin^2x=(-\frac{2}{3})^2[/tex]

[tex]sin^2x=\frac{4}{9}[/tex].

We know,

[tex]cos^2x= 1-sin^2x[/tex]

Plugging the value of [tex]sin^2x[/tex]

[tex]cos^2x= 1-\frac{4}{9}[/tex]

[tex]cos^2x= \frac{1}{1} -\frac{4}{9}[/tex]

[tex]cos^2x= \frac{9}{9} -\frac{4}{9}[/tex]

[tex]cos^2x= \frac{9-4}{9}[/tex]

[tex]cos^2x= \frac{5}{9}[/tex]

Taking square root on both sides, we get

[tex]\sqrt{cos^2x} = \sqrt{\frac{5}{9}}[/tex]

[tex]cos \ x=\frac{\sqrt{5} }{3}[/tex].

Note: In 3rd qadrant cos is positive.

Therefore, [tex]cos \ x=\frac{\sqrt{5} }{3}[/tex].


Answer:

[tex]cos x = \frac{\sqrt{5} }{3}[/tex]

Step-by-step explanation:

We are given sin = -2/3  which falls in the 3rd quadrant and we are to find the value of cos with the help of this given information.

We know that, [tex]cos^2x= 1- sin^2x[/tex]. therefore we will square the given value of sin:

[tex]sin = -\frac{2}{3}[/tex]

[tex]sin^2x = (sin = -\frac{2}{3} )^2[/tex]

[tex]sin^2x= \frac{4}{9}[/tex]

Now substituting this value of [tex]sin^2x[/tex] in the above mentioned formula to get:

[tex]cos^2x= 1- \frac{4}{9}[/tex]

[tex]cos^2x=\frac{5}{9}[/tex]

Taking square root on both the sides to get:

[tex]\sqrt{cos^2x} = \sqrt{\frac{5}{9} }[/tex]

[tex]cos x = \frac{\sqrt{5} }{3}[/tex]

Therefore, [tex]cos x = \frac{\sqrt{5} }{3}[/tex] since it is positive in the 3rd quadrant.