Respuesta :

Answer:

The [tex]amplitude=|A|=\frac{1}{2}[/tex], [tex]period=3[/tex] and [tex]\text{phase shift}=\frac{2\pi}{3}[/tex].

Step-by-step explanation:

The given function is

[tex]f(t)=-\frac{1}{2}\sin (3t-2\pi)[/tex]      .... (1)

The general form of sine function is

[tex]F(t)=A\sin (Bt-C)+D[/tex]                 ....(2)

where, |A| is the amplitude, B is period, D is the vertical shift (up or down), and C/B is used to find the phase shift.

On comparing (1) and (2), we get

[tex]A=-\frac{1}{2}[/tex]

[tex]B=3[/tex]

[tex]C=2\pi[/tex]

[tex]D=0[/tex]

So,

[tex]amplitude=|A|=\frac{1}{2}[/tex]

[tex]period=3[/tex]

[tex]\text{phase shift}=\frac{2\pi}{3}[/tex]

Therefore [tex]amplitude=|A|=\frac{1}{2}[/tex], [tex]period=3[/tex] and [tex]\text{phase shift}=\frac{2\pi}{3}[/tex].

Answer:

amplitude = 1/2

phase shift = 2/3 pi

period = 2/3 pi

Step-by-step explanation:

the amplitude is what comes before the sine (but without the negative)

the period is 2pi/B, B here is 3

and the phase shift is -C/B or -(-2)/3 = 2/3 pi