Respuesta :

frika

Answer:

[tex]\sec \theta=\dfrac{5}{4}.[/tex]

Step-by-step explanation:

Use the definition of secans:

[tex]\sec \theta=\dfrac{1}{\cos \theta}.[/tex]

Now you have to find the cosine of angle [tex]\theta.[/tex]

Point (12,-9) lies in fourth quadrant, then [tex]\cos \theta>0.[/tex]

Consider right triangle with legs 9 and 12, by the Pythagorean theorem,

[tex]\text{hypotenuse}^2=9^2+12^2=81+144=225,\\ \\\text{hypotenuse}=15.[/tex]

Thus,

[tex]\cos \theta=\dfrac{\text{adjacent leg}}{\text{hypotenuse}}=\dfrac{12}{15}=\dfrac{4}{5}[/tex]

and

[tex]\sec \theta=\dfrac{1}{\dfrac{4}{5}}=\dfrac{5}{4}.[/tex]

Answer: 5/4

Step-by-step explanation: