Respuesta :

Answer:

[tex]m\angle K \approx 104.14^{\circ}[/tex]

Step-by-step explanation:

In isosceles trapezoid JKLM,

Given: [tex]m\angle J = 17x+7[/tex] and [tex]m\angle M = 11x+13[/tex]

Since, JKLM is an isosceles trapezoid so each pair of base angles is congruent.

[tex]m\angle J = m\angle K[/tex]

[tex]m\angle M = m\angle L[/tex]

As, we know that the sum of the angle of a trapezoid is [tex]360^{\circ}[/tex]

The angles are:

[tex]m\angle J = 17x+7[/tex]

[tex]m\angle K = 17x+7[/tex]

[tex]m\angle L = 11x+13[/tex]

[tex]m\angle M = 11x+13[/tex]

Therefore,

[tex]17x+7+17x+7+11x+13+11x+13 = 360^{\circ}[/tex]

Combine like terms;

[tex]56x + 40 = 360^{\circ}[/tex]

Subtract 40 from both sides we get;

[tex]56x + 40 -40 = 360 - 40[/tex]

Simplify:

[tex]56x = 320[/tex]

Divide both sides by 56 we get;

[tex]x = \frac{320}{56} = \frac{40}{7}[/tex]

To find the angle of [tex]m\angle K[/tex]:

[tex]m\angle K = 17x + 7 = 17(\frac{40}{7}) +7 = 97.14 + 7[/tex]

Simplify:

[tex]m\angle K \approx 104.14^{\circ}[/tex]

Therefore, the value of angle of [tex]m\angle K \approx 104.14^{\circ}[/tex]

Answer:

202

Step-by-step explanation:

just did assignment on edg