Respuesta :

ANSWER

[tex]S_ \infty = \frac{40}{3} [/tex]

EXPLANATION

The given series is

[tex]20-10+5-...[/tex]


The first term of the series is,

[tex]a_1=20[/tex]

The common ratio of this series is,

[tex]r = \frac{ - 10}{20} [/tex]

This simplifies to,

[tex]r = - \frac{1}{2} [/tex]

The sum to infinity of this sequence is given by the formula,

[tex]S_ \infty = \frac{a_1}{1-r} [/tex]

We substitute the above values into the formula to obtain,

[tex]S_ \infty = \frac{20}{1- - \frac{1}{2} } [/tex]

This simplifies to,

[tex]S_ \infty = \frac{20}{1 + \frac{1}{2} } [/tex]

We simplify the denominator to get,

[tex]S_ \infty = \frac{20}{ \frac{3}{2} } [/tex]

This will finally give us,

[tex]S_ \infty =20 \times \frac{2}{3} [/tex]

[tex]S_ \infty = \frac{40}{3} [/tex]

The correct answer is A.

Answer:

A. 40/3  is the correct choice