Answer:
a. [tex]A'(-6,-15)[/tex]
b. [tex]A''(-18,-15)[/tex]
Step-by-step explanation:
The given point is [tex]A(-6,5)[/tex].
We want to find the image after this point has been reflected in the line [tex]y=-5[/tex].
Recall that, the mapping for a reflection in the line [tex]y=k[/tex] is
[tex]P(x,y)\rightarrow P'(x,2k-y)[/tex].
This implies that,
[tex]A(-6,5)\rightarrow A'(-6,2(-5)-5)[/tex].
This simplifies to,
[tex]A(-6,5)\rightarrow A'(-6,-10-5)[/tex].
This will finally give us,
[tex]A(-6,5)\rightarrow A'(-6,-15)[/tex].
b. We now apply the second reflection, which is a reflection in the line [tex]x=-12[/tex].
Recall again that, the reflection in the line [tex]x=k[/tex] has the mapping
[tex]P(x,y)\rightarrow P'(2k-x,y)[/tex].
This implies that,
[tex]A'(-6,-15)\rightarrow A''(2(-12)--6,-15)[/tex].
This implies that,
[tex]A'(-6,-15)\rightarrow A''(-24+6,-15)[/tex].
This will finally give us,
[tex]A'(-6,-15)\rightarrow A''(-18,-15)[/tex].
See graph in attachment.