Respuesta :

Answer:

[tex]^{ \lim}_{n \to \infty} (1+\frac{1}{n})=1[/tex]

Step-by-step explanation:

We want to evaluate the following limit.


[tex]^{ \lim}_{n \to \infty} (1+\frac{1}{n})[/tex]


We need to recall that, limit of a sum is the sum of the limit.


So we need to find each individual limit and add them up.

[tex]^{ \lim}_{n \to \infty} (1+\frac{1}{n})=^{ \lim}_{n \to \infty} (1) +^{ \lim}_{n \to \infty} \frac{1}{n}[/tex]


Recall that, as [tex]n\rightarrow \infty,\frac{1}{n} \rightarrow 0[/tex] and the limit of a constant, gives the same constant value.



This implies that,


[tex]^{ \lim}_{n \to \infty} (1+\frac{1}{n})= 1 +0[/tex]


This gives us,

[tex]^{ \lim}_{n \to \infty} (1+\frac{1}{n})= 1[/tex]


The correct answer is D