Respuesta :

remember [tex]\frac{\frac{a}{b}}{\frac{c}{d}}=(\frac{a}{b})(\frac{d}{c})=\frac{ad}{bc}[/tex]

try to combine fractions in numerator and denomenator

numerator: [tex]\frac{1}{x}+\frac{2}{y}[/tex]

make common denom

multiply left one by [tex]\frac{y}{y}[/tex] and right one by [tex]\frac{x^2}{x^2}[/tex]

[tex]\frac{y}{yx^2}+\frac{2x^2}{yx^2}=\frac{2x^2+y}{yx^2}[/tex]

denomenator

[tex]\frac{5}{x}-\frac{6}{y^2}[/tex]

make common denom

multiply left one by [tex]\frac{y^2}{y^2}[/tex] and right one by [tex]\frac{x}{x}[/tex]

[tex]\frac{5y^2}{xy^2}-\frac{6x}{xy^2}=\frac{5y^2-6x}{xy^2}[/tex]


combining we get

[tex]\frac{\frac{1}{x^2}+\frac{2}{y}}{\frac{5}{x}-\frac{6}{y^2}}=[/tex]

[tex]\frac{\frac{2x^2+y}{yx^2}}{\frac{-6x+5y^2}{xy^2}}=[/tex]

[tex](\frac{2x^2+y}{yx^2})(\frac{xy^2}{-6x+5y^2})=[/tex]

[tex]\frac{2x^3y^2+xy^3}{-6x^3y+5x^2y^3}=[/tex]

[tex](\frac{2x^2y+y^2}{-6x^2+5xy})(\frac{xy}{xy})=[/tex]

[tex](\frac{2x^2y+y^2}{-6x^2+5xy})(1)=[/tex]

[tex]\frac{2x^2y+y^2}{-6x^2+5xy}[/tex]

Answer:

The simplified version of the given expression is [tex](\frac{2x^2y+y^2}{5xy-6x^2} )[/tex]

Step-by-step explanation:

We are given an expression which is a complex fraction:

[tex]\frac{\frac{1}{x^2} +\frac{2}{y} }{\frac{5}{x} +\frac{6}{y^2} }[/tex]

We can take LCM of these fractions to get:

[tex]\frac{\frac{y+2x^2}{x^2y} }{\frac{5y^2-6x}{xy^2} }[/tex]

Taking the reciprocal of the lower fraction to change it to multiplication:

[tex]\frac{y+2x^2}{x^2y}[/tex] × [tex]\frac{xy^2}{5y^2-6x}[/tex]

[tex]\frac{2x^2y+xy^3}{5x^2y^3-6x^3y}[/tex]

Taking xy as common from both the numerator and the denominator to get:

[tex]\frac{xy}{xy} (\frac{2x^2y+y^2}{5xy-6x^2} )[/tex]

[tex](\frac{2x^2y+y^2}{5xy-6x^2} )[/tex]