Respuesta :

We are given equations as

[tex]xy=12[/tex]

Firstly, we will solve for y

[tex]y=\frac{12}{x}[/tex]

now, we are given sum as

[tex]S=2x+y[/tex]

now, we can plug back y

[tex]S=2x+\frac{12}{x}[/tex]

Since, we have to minimize it

so, we will find it's derivative

[tex]S'=2-\frac{12}{x^2}[/tex]

now, we can set it to 0

and then we can solve for x

[tex]S'=2-\frac{12}{x^2}=0[/tex]

[tex]x=\sqrt{6},\:x=-\sqrt{6}[/tex]

Since , both numbers are positive

so, we will only consider positive value

[tex]x=\sqrt{6}[/tex]

now, we can find y-value

[tex]y=\frac{12}{\sqrt{6}}[/tex]

[tex]y=2\sqrt{6}[/tex]

So, two positive numbers are

[tex]x=\sqrt{6}[/tex]

[tex]y=2\sqrt{6}[/tex]............Answer

Answer:

The positive numbers are [tex]$x=\sqrt{6}, \quad\\ y=2 \sqrt{6}$[/tex].

Explanation:

[tex]$S^{\prime}(x)=0$[/tex]

The equation is derived as,

[tex]$\Rightarrow \frac{d}{d x}\left(2 x+12 x^{-1}\right)=0$[/tex]

[tex]$\Rightarrow 2-12 x^{-2}=0$[/tex]

[tex]$\Rightarrow x^{2}=6$[/tex]

Further simplified as,

[tex]$x=\pm \sqrt{6}$[/tex]

[tex]$x=\sqrt{6}$[/tex]

[tex]$y=\frac{12}{\sqrt{6}}\\=2 \sqrt{6}$[/tex]

Since we have only one local minimum on our open interval [tex]$\backslash x \in(0, \infty), \backslash$[/tex] it's the absolute minimum.

Learn about refer bonds refer:

  • https://brainly.com/question/19139062.