Answer:
[tex](4y^6)^3 - (10z^2)^3[/tex]
Step-by-step explanation:
Given: [tex]64y^{18}- 1000z^6[/tex]
Solution:
Option 1) [tex](4y^6)^3 - (10z^2)^3[/tex]
[tex]64y^{18} - 1000z^6[/tex]
So, Option 1 is equivalent to [tex]64y^{18}- 1000z^6[/tex]
Option 2)[tex](16y^6)^3 -(10z^2)^3[/tex]
[tex]4096y^{18} -1000z^6[/tex]
So, Option 2 is not equivalent to [tex]64y^{18}- 1000z^6[/tex]
Option 3)[tex](16y^6)^3 -(100z^2)^3[/tex]
[tex]4096y^{18} -1000000z^6[/tex]
So, Option 3 is not equivalent to [tex]64y^{18}- 1000z^6[/tex]
Option 4)[tex](4y^6)^3 -(100z^2)^3[/tex]
[tex]64y^{18} -1000000z^6[/tex]
So, Option 4 is not equivalent to [tex]64y^{18}- 1000z^6[/tex]
Hence [tex](4y^6)^3 - (10z^2)^3[/tex] is equivalent to [tex]64y^{18}- 1000z^6[/tex]
So, Option A is correct.