Respuesta :
ou're walking through a park when out of nowhere, the man in front of you gets smacked by an errant Frisbee. Automatically, you recoil in sympathy. Or you're watching a race, and you feel your own heart racing with excitement as the runners vie to cross the finish line first. Or you see a woman sniff some unfamiliar food and wrinkle her nose in disgust. Suddenly, your own stomach turns at the thought of the meal.
For years, such experiences have puzzled psychologists, neuroscientists and philosophers, who've wondered why we react at such a gut level to other people's actions. How do we understand, so immediately and instinctively, their thoughts, feelings and intentions?
Now, some researchers believe that a recent discovery called mirror neurons might provide a neuroscience-based answer to those questions. Mirror neurons are a type of brain cell that respond equally when we perform an action and when we witness someone else perform the same action. They were first discovered in the early 1990s, when a team of Italian researchers found individual neurons in the brains of macaque monkeys that fired both when the monkeys grabbed an object and also when the monkeys watched another primate grab the same object.
Neuroscientist Giacomo Rizzolatti, MD, who with his colleagues at the University of Parma first identified mirror neurons, says that the neurons could help explain how and why we "read" other people's minds and feel empathy for them. If watching an action and performing that action can activate the same parts of the brain in monkeys--down to a single neuron--then it makes sense that watching an action and performing an action could also elicit the same feelings in people.
The concept might be simple, but its implications are far-reaching. Over the past decade, more research has suggested that mirror neurons might help explain not only empathy, but also autism (see page 52) and even the evolution of language (see page 54).
In fact, psychologist V.S. Ramachandran, PhD, has called the discovery of mirror neurons one of the "single most important unpublicized stories of the decade."
But that story is just at its beginning. Researchers haven't yet been able to prove that humans have individual mirror neurons like monkeys, although they have shown that humans have a more general mirror system. And researchers are just beginning to branch out from the motor cortex to try to figure out where else in the brain these neurons might reside.
The first study
The discovery of mirror neurons owes as much to serendipity as to skill. In the 1980s, Rizzolatti and his colleagues had found that some neurons in an area of macaque monkeys' premotor cortex called F5 fired when the monkeys did things like reach for or bite a peanut.