Answer:
[tex]4.5a^6d^2[/tex]
Step-by-step explanation:
Use:
[tex](ab)^n=a^nb^n\\\\(a^n)^m=a^{nm}\\\\a^n\cdot a^m=a^{n+m}\\\\\dfrac{a^n}{a^m}=a^{n-m}\\\\a^0=1\ for\ a\neq0[/tex]
----------------------------------------------------------------------------------
[tex]\dfrac{(3a^3b^{-2}c^0d)^3}{6a^3b^{-8}c\cdot b^2d}=\dfrac{3^3(a^3)^3(b^{-2})^3(1^3)d^3}{6a^3b^{-8+2}d}=\dfrac{27a^9b^{-6}d^3}{6a^3b^{-6}d}\\\\=\dfrac{27}{6}a^{9-3}b^{-6-(-6)}d^{3-1}=4.5a^6b^0d^2=4.5a^6d^2[/tex]