What is the average rate of change of f(x), represented by the table of values, over the interval [-3, 4]? x f(x) -6 27 -3 6 -1 2 0 3 1 6 4 27 A. -6 B. -3 C. 3 D. 6 E. 21

Respuesta :

Answer:

The correct option will be:  C.  3

Step-by-step explanation:

The given table is..........

[tex]x :[/tex]      -6      -3      -1      0      1      4

[tex]f(x) :[/tex]  27     6      2      3      6     27

The formula for average rate of change is:   [tex]\frac{f(b)-f(a)}{b-a}[/tex] , where [tex][a,b][/tex] is the given interval.

Here the interval is [-3, 4]. So,  [tex]a=-3[/tex] and [tex]b=4[/tex]

Now, plugging the values of [tex]a[/tex] and [tex]b[/tex] into the above formula, we will get........

[tex]\frac{f(4)-f(-3)}{4-(-3)}[/tex]

From the given table, we will get  [tex]f(4)=27[/tex] and [tex]f(-3)=6[/tex]

So, the average rate of change will be:  [tex]\frac{27-6}{4-(-3)}= \frac{21}{7}=3[/tex]

Answer:

The person that answered it above me is correct

Step-by-step explanation: