Respuesta :

Answer 1:

[tex]\frac{x^{2} -x+1}{x^{2} +x+1}[/tex]

Here given that, x is real that is the domain

Range of the given expression is :

[tex]\frac{1}{3} \leq y\leq 3[/tex]  

Write it interval form.

[tex][\frac{1}{3},3][/tex]       Option (2)


Answer 3:

[tex]\frac{11x^{2} +12x+6}{x^{2} +4x+2}[/tex]

Here domain is all real x.

Range is :

{y ∈ R : y ≤ -5 or y ≥ 3}

In interval form:

(-∞, -5] ∪ [3, ∞)

So, y can't lies between -5 to 3                Option (2)


Answer 5 :

[tex]\frac{x^{2} -3x+4}{x^{2} +3x+4}[/tex]

Here domain is :

x is real

And range is :

{y ∈ R : [tex]\frac{-1}{7}[/tex] ≤ y ≤ 7}

We see that maximum y value is 7.

So, maximum value is 7.                      Option (4)


Answer 6:

[tex]\sqrt{9x^{2}+6x+1 } < (2 -x)[/tex]

Solve for x .

Square both the side

9x² + 6x + 1 =  4 + x² - 4x

8x² + 10x - 3 < 0

(2x + 3)(4x - 1) < 0

2x + 3 = 0                           &                    4x - 1 = 0

x = [tex]\frac{-3}{2}[/tex]      &                    x = [tex]\frac{1}{4}[/tex]

So,

[tex]\frac{-3}{2} < x < \frac{1}{4}[/tex]

x ∈ [tex](-\frac{3}{2} , \frac{1}{4} )[/tex]                     Option (1)