We can solve this problem using separation of variables.
Then apply the initial conditions
EXPLANATION
We were given the first order differential equation
[tex]\frac{dT}{dt}=k(T-a)[/tex]
We now separate the time and the temperature variables as follows,
[tex]\frac{dT}{T-a}=kdt[/tex]
Integrating both sides of the differential equation, we obtain;
[tex]ln(T-a)=kt +c[/tex]
This natural logarithmic equation can be rewritten as;
[tex]T-a=e^{kt +c}[/tex]
Applying the laws of exponents, we obtain,
[tex]T-a=e^{kt}\times e^{c}[/tex]
[tex]T-a=e^{c}e^{kt}[/tex]
We were given the initial conditions,
[tex]T(0)=4[/tex]
Let us apply this condition to obtain;
[tex]4-20=e^{c}e^{k(0)}[/tex]
[tex]-16=e^{c}[/tex]
Now our equation, becomes
[tex]T-a=-16e^{kt}[/tex]
or
[tex]T=a-16e^{kt}[/tex]
When we substitute a=20,
we obtain,
[tex]T=20-16e^{kt}[/tex]
b) We were also given that,
[tex]T(5)=8[/tex]
Let us apply this condition again to find k.
[tex]8=20-16e^{5k}[/tex]
This implied
[tex]-12=-16e^{5k}[/tex]
[tex]\frac{-12}{-16}=e^{5k}[/tex]
[tex]\frac{3}{4}=e^{5k}[/tex]
We take logarithm to base e of both sides,
[tex]ln(\frac{3}{4})=5k[/tex]
This implies that,
[tex]\frac{ln(\frac{3}{4})}{5}=k[/tex]
[tex]k=-0.2877[/tex]
After 15 minutes, the temperature will be,
[tex]T=20-16e^{-0.2877\times 15}[/tex]
[tex]T=20-0.21376[/tex]
[tex]T=19.786[/tex]
After 15 minutes, the temperature is approximately 20°C