Respuesta :
Given: KM bisects ∠JKL.
Prove: [tex]m\angle MKL=\dfrac{1}{2}m\angle JKL.[/tex]
Proof:
1. If KM bisects ∠JKL, then ∠JKM≅∠LKM and
[tex]m\angle LKM=m\angle LKM.[/tex]
2.
[tex]m\angle JKL=m\angle JKM+m\angle LKM.[/tex]
3. At last,
[tex]m\angle JKL=m\angle JKM+m\angle LKM=m\angle LKM+m\angle LKM=2m\angle LKM,\\ \\m\angle LKM=\dfrac{1}{2}m\angle JKL.[/tex]
Answer:
substitution property
Step-by-step explanation:
i took it on the quiz edge 2021