A docking shuttle needs to decelerate at a very specific rate, given by a=bt2a=bt2 . if the shuttle is moving at 800m/s800m/s and begins at 30km away, how long will it take to dock?

Respuesta :

as it is given here

[tex]a = bt^2[/tex]

by integrating both sides

[tex]v_f - v_i = \frac{bt^3}{3}[/tex]

as finally it has to stop

[tex]800 = \frac{bt^3}{3}[/tex]

[tex]2400 = bt^3[/tex]

also we know that

[tex]v = 800 - \frac{bt^3}{3}[/tex]

integrating both sides

[tex]x = 800 t - \frac{bt^4}{12}[/tex]

[tex]30000 = 800 t - \frac{2400*t}{12}[/tex]

[tex]30000 = 800t - 200t[/tex]

[tex]t = 50 s[/tex]

so it will take t = 50 s to cover this distance

Answer:

50 seconds.

Explanation:

The given function for acceleration (a) is;

a = bt²

(I) To get the velocity (v) of the shuttle, we integrate the above equation with respect to t as follows;

[tex]\int\limits^x_y {a} \, dt[/tex] =  [tex]\int\limits^x_y {bt^{2} } \, dt[/tex]     --------------------------(ii)

Where;

x and y are the limits of integration.

Integrate both sides of equation (ii)

Δv = [tex]\frac{bt^{3} }{3}[/tex]

Where;

Δv = velocity at some time t[v(t)] - initial velocity at time t= 0[v(0)]

=> v(t) - v(0) = [tex]\frac{bt^{3} }{3}[/tex]        -------------------(iii)

From the question,

v(0) = initial velocity of the shuttle = 800m/s

Substitute these values into equation (iii) as follows;

v(t) - 800 = [tex]\frac{bt^{3} }{3}[/tex]

v(t) =  [tex]\frac{bt^{3} }{3}[/tex]  + 800            -----------------------(iv)

Also;

(II) To get the distance (s) covered, we integrate equation (iv) as follows;

[tex]\int\limits^x_y {v(t)} \, dt[/tex]  =  [tex]\int\limits^x_y {(\frac{bt^{3} }{3} + 800) } \, dt[/tex]            ----------------(v)

Where;

x and y are the limits of integration.

Integrate both sides of equation (v)

Δs = [tex]\frac{bt^{4} }{12}[/tex] + 800t

Where;

Δs = distance at some time t[s(t)] - initial distance at time t = 0 [v(0)]

=> s(t) - s(0) = [tex]\frac{bt^{4} }{12}[/tex] + 800t      -------------------(vi)

From the question,

s(t) - s(0) = 30km = 30000m

Substitute these values into equation (vi) as follows;

30000 = [tex]\frac{bt^{4} }{12}[/tex] + 800t      

Rewrite the equation as follows;    

30000 =  ([tex]\frac{bt^{3} }{3}[/tex] x [tex]\frac{t }{4}[/tex]) + 800t           -----------------------(vii)

(III) Now taking equations(iv) and (vii), let's calculate the time it will take the shuttle to dock as follows;

v(t) =  [tex]\frac{bt^{3} }{3}[/tex]  + 800

Where;

v(t) = 0      [since the velocity when the shuttle docks(stops temporarily) is zero]

=> 0 =  [tex]\frac{bt^{3} }{3}[/tex]  + 800

=>  [tex]\frac{bt^{3} }{3}[/tex]  = -800

Now substitute the value of [tex]\frac{bt^{3} }{3}[/tex] = -800 into equation (vii) as follows;

30000 = (-800 x [tex]\frac{t }{4}[/tex]) + 800t

30000 = ([tex]\frac{-800t}{4}[/tex]) + 800t  

Multiply through by 4;

120000 = -800t + 3200t

120000 = 2400t

Solve for t;

t = 120000 / 2400

t = 50

Therefore, the time it will take for the shuttle to dock is 50 seconds.