Respuesta :

First we simplify [tex]\sqrt{12}[/tex] :

[tex]\sqrt{12}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{3}[/tex]

This can be simplified further, because [tex]\sqrt{4}[/tex] is just 2:

[tex]\sqrt{4}[/tex] × [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex]

So [tex]\sqrt{12}[/tex] = 2[tex]\sqrt{3}[/tex]

----------------------------

Now we write 2[tex]\sqrt{3}[/tex] instead of [tex]\sqrt{12}[/tex] in the question:

2[tex]\sqrt{3}[/tex] ( -1 + [tex]\sqrt{5}[/tex])  

We solve this by multiplying 2[tex]\sqrt{3}[/tex] by the numbers in the brackets:

2[tex]\sqrt{3}[/tex] ( -1 + [tex]\sqrt{5}[/tex]) = -2[tex]\sqrt{3}[/tex] + 2[tex]\sqrt{15}[/tex]

(Explanation: 2[tex]\sqrt{3}[/tex] × -1 = -2[tex]\sqrt{3}[/tex] ,  and 2[tex]\sqrt{3}[/tex] × [tex]\sqrt{5}[/tex] = 2[tex]\sqrt{15}[/tex]  because the numbers inside of the squares are multiplied by each other - So the 3 times the 5 equals 15)

-----------------

Answer:

-2[tex]\sqrt{3}[/tex] + 2[tex]\sqrt{15}[/tex]

 (Option B)