contestada

Can you teach me how to do these?? plzaa






[tex] \frac{2}{3} a {b}^{3} a {}^{4} [/tex

[tex] \frac{8xy {}^{8} }{16y {}^{6} } [/tex]

thanksss!

Respuesta :

if we are simplifying, ⅜ ab³a⁴ is
⅜a^5b³. when multiplying like bases you add exponents

second is xy²/2. when dividing like bases you subtract exponents

In general, you make use of the rules of exponents. It can be helpful to understand where they come from.

An exponent signifies repeated multiplication.

[tex]x\cdot x\cdot x=x^{3}\qquad\text{the exponent 3 means x is a factor 3 times}[/tex]

When you multiply, you add exponents.

[tex](x\cdot x\cdot x)\times (x\cdot x)=(x\cdot x\cdot x\cdot x\cdot x)\\\\x^{3}\times x^{2}=x^{(3+2)}=x^{5}[/tex]

Likewise, when you divide, you subtract exponents. You can also think of this as adding the opposite of exponents that are in the denominator.

[tex]\dfrac{x\cdot x\cdot x}{x\cdot x}=\dfrac{x\cdot x}{x\cdot x}\times x=x\\\\\dfrac{x^{3}}{x^{2}}=x^{(3-2)}=x^{1}=x[/tex]

It should be no surprise then that if there are excess factors in the denominator, they can be expressed using a negative exponent.

[tex]\dfrac{x\cdot x}{x\cdot x\cdot x}=\dfrac{1}{x}\\\\\dfrac{x^{2}}{x^{3}}=x^{(2-3)}=x^{-1}\qquad\text{using exponents}[/tex]

The idea of using multiplication to show repeated addition applies to exponents as well.

[tex](x\cdot x)\times (x\cdot x)\times (x\cdot x)=(x\cdot x\cdot x\cdot x\cdot x\cdot x)\\\\=x^{2}\cdot x^{2}\cdot x^{2}=x^{(2+2+2)}\\\\=\left(x^{2}\right)^{3}=x^{2\cdot 3}=x^{6}[/tex]

_____

With these ideas in mind ...

[tex]\frac{2}{3}ab^{3}a^{4}=\frac{2}{3}a^{(1+4)}b^{3}=\frac{2}{3}a^5b^3[/tex]

[tex]\dfrac{8xy^{8}}{16y^{6}}=\frac{8}{16}xy^{(8-6)}=\frac{1}{2}xy^{2}[/tex]