Respuesta :

Firstly, we will draw figure

Let's assume

length of AC=x

we have

AB : BC = 2 : 1

so,

[tex]AB=\frac{2}{3} x[/tex]

[tex]BC=\frac{1}{3} x[/tex]

Point D is on line AB

and

[tex]AB=\frac{2}{3} x[/tex]

AD : DB = 3 : 2

so, we get

[tex]AD=\frac{3}{5} *\frac{2}{3} x[/tex]

[tex]AD=\frac{2}{5} x[/tex]

[tex]DB=\frac{2}{5} *\frac{2}{3} x[/tex]

[tex]DB=\frac{4}{15} x[/tex]

now, we can locate these values

Firstly, we will find DC

DC=DB+BC

now, we can plug values

[tex]DC=\frac{4}{15} x+\frac{1}{3} x[/tex]

[tex]DC=\frac{3x}{5}[/tex]

we have got

[tex]AD=\frac{2}{5} x[/tex]

now, we can find ratio

[tex]\frac{AD}{DC} =\frac{\frac{2}{5} x}{\frac{3x}{5}}[/tex]

now, we can simplify it

[tex]\frac{AD}{DC} =\frac{2}{3}[/tex]

so,

AD:DC=2:3...........Answer


Ver imagen rejkjavik