Function A describes f(x) = 5x + 2. ('2 more than' means 'add 2', and '5 times x' means '5x'.)
To find function B, calculate the slope using two of the given points in the table.
[tex] \frac{y - y}{x - x} =\frac{2-5}{-1-0}=\frac{-3}{-1}=3 [/tex]
This creates a partial equation: y = 3x + b. To find b (or the y-intercept), input one coordinate pair from the chart.
[tex] y=3x+b [/tex]
[tex] 2=3(-1)+b [/tex]
[tex] 2=-3+b [/tex]
[tex] 5 = b [/tex]
This creates the equation of function B: y = 3x + 5.
Now, you can compare the slopes and y-intercepts of function A and function B.
Function A: f(x) = 5x + 2
Function B: f(x) = 3x + 5
These functions do not share a slope nor a y-intercept.