PLEASE HELP!! PLEASE.


Instructions: Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the parabolas represented by the equations with their vertices.

PLEASE HELP PLEASE Instructions Drag the tiles to the correct boxes to complete the pairs Not all tiles will be used Match the parabolas represented by the equa class=

Respuesta :

potots

it would be a c e and f

Answer:

(-1.75, -1.125) → y = 2x² + 7x + 5

(-3, -1) → y = x² + 6x + 8

(-4, -4)y = 2x² + 16x + 28

(2.5, 20.25) → y = -x² + 5x + 14

Step-by-step explanation:

We have to find the vertices of the parabolas given in the picture.

A). y = x² + 6x + 8

We will convert this equation into vertex form as y = (x - h)² + k

then vertex will be (h, k)

y = x² + 6x + 8

y + 1 = x² + 6x + 9

y + 1 = (x + 3)²

y = (x + 3)² - 1

y = [x - (-3)]² + (-1)

So vertex will be (-3, -1)

B). y = 2x² + 16x + 28

y = 2[x² + 8x + 14]

y = 2[x² + 8x + 16 - 2]

y = 2[(x + 4)²- 2]

y = 2[{x -(-4)}² - 2]

y = [2{x-(-4)}²] - 4

Therefore, vertex will be (-4, -4)

C). y = -x² + 5x + 14

y = -[x² - 5x - 14]

y = -[x² - 2(2.5x) - (2.5)²+ (2.5)² - 14]

y = -[(x - 2.5)² - 6.25 - 14]

y = -[(x - 2.5)² - 20.25]

Therefore, vertex will be (-2.5, - 20.25)

D). y = -x² + 7x + 7

y = -[x² - 7x - 7]

y = -[ x² - 2(3.5)x + (3.5)²- (3.5)²- 7]

y = -[(x - 3.5)²-12.25 - 7]

y = -[(x - 3.5)² - 19.5]

Therefore, vertex will be (-3.5, 19.5)

E). y = 2x² + 7x + 5

y = 2[x² + (3.5)x + 2.5]

y = 2[x²+ 2(1.75)x + (1.75)²-(1.75)² + 2.5]

y = 2[(x + 1.75)²- 3.0625 + 2.5]

y = 2[{x + 1.75)² - 0.5625]

y = 2(x + 1.75)² - 1.125

therefore, vertex will be (-1.75, 1.125)