Respuesta :

DeanR
The second Pythagorean Triple, after [tex]3^2+4^2=5^2,[/tex] is

[tex]5^2+12^2=13^2[/tex]

or, doubling,

[tex]10^2 + 24^2 = 26^2[/tex]

So [tex]a=10[/tex]

Greetings! 

We can solve this problem through the use of Pythagorean's Theorem. It states that that the square of the first leg plus the square of second leg is equal to the square of the hypotenuse:
[tex]a^2+b^2=c^2[/tex]

Let's input the information we're given from the diagram. 
→ We know that the first leg is equal to 24 
→ We also know that the hypotenuse is equal to 26
 
The equation with the imputed information: 
[tex]24^2+b^2=26^2[/tex]

Simplify the equation:
[tex]576+b^2=676[/tex]

Add -576 to both sides of the equation:
[tex](576+b^2)(-576)=(676)(-576)[/tex]

[tex]b^2=100[/tex]

Find the Square Root of both sides: 
[tex] \sqrt{b^2}= \sqrt{100} [/tex]

[tex]b=10[/tex]

The Answer is: 
[tex]\boxed{b=10}[/tex]

The unknown leg is 10 units longs

I hope this helped!
-Benjamin