Respuesta :
The expression on the left simplifies to
tan(x) - sin(x)/cos(x) = 0
So, your expression is 0 = cos(x). This matches your answer choices ...
c. cos(x) = 0
_____
Of course, at cos(x)=0, the entire left side of the equation amounts to 1/0 - 1/0, so is undefined. Effectively, there is no solution.
tan(x) - sin(x)/cos(x) = 0
So, your expression is 0 = cos(x). This matches your answer choices ...
c. cos(x) = 0
_____
Of course, at cos(x)=0, the entire left side of the equation amounts to 1/0 - 1/0, so is undefined. Effectively, there is no solution.

Answer:
The numerical value of one trigonometric function of x is zero.
i.e cos x=0
Step-by-step explanation:
Given expression
[tex]\frac{1}{cotx} -\frac{secx}{cosec x} =cosx[/tex]
We know that
[tex]cotx =\frac{cosx}{ sinx }[/tex]
[tex]secx=\frac{ 1}{cosx}[/tex]
[tex]cosecx=\frac{1}{sinx}[/tex]
Put the values of cotx , secx and cosecx we get
[tex]\frac{\frac{1}{cosx} }{sinx} -\frac{\frac{1}{cosx} }{\frac{1}{sinx} }[/tex]=cosx
By simplification we get
[tex]\frac{sinx }{cosx} -\frac{sinx}{cosx}[/tex]=cosx
By simplification we get
cosx=0
Hence, option c. cosx=0 is the correct answer.