Respuesta :

The expression on the left simplifies to
  tan(x) - sin(x)/cos(x) = 0

So, your expression is 0 = cos(x). This matches your answer choices ...
  c.   cos(x) = 0


_____
Of course, at cos(x)=0, the entire left side of the equation amounts to 1/0 - 1/0, so is undefined. Effectively, there is no solution.
Ver imagen sqdancefan

Answer:

The numerical value of one trigonometric function of x is zero.

i.e cos x=0

Step-by-step explanation:

Given expression

[tex]\frac{1}{cotx} -\frac{secx}{cosec x} =cosx[/tex]

We know that

[tex]cotx =\frac{cosx}{ sinx }[/tex]

[tex]secx=\frac{ 1}{cosx}[/tex]

[tex]cosecx=\frac{1}{sinx}[/tex]

Put the values of cotx , secx and cosecx we get

[tex]\frac{\frac{1}{cosx} }{sinx} -\frac{\frac{1}{cosx} }{\frac{1}{sinx} }[/tex]=cosx

By simplification we get

[tex]\frac{sinx }{cosx} -\frac{sinx}{cosx}[/tex]=cosx

By simplification we get

cosx=0

Hence, option c. cosx=0 is the correct answer.