These tables of values represent continuous functions. In which table do the values represent an exponential function?
A.
x y
1 3
2 6
3 9
4 12
5 15
B.
x y
1 2
2 6
3 18
4 54
5 162
C.
x y
1 10
2 22
3 34
4 46
5 58
D.
x y
1 7
2 8
3 9
4 10
5 11

Respuesta :

Answer:

The correct option is B.

Step-by-step explanation:

A function is called an exponential function if it has common ratio.

A function is called an linear function if it has common difference.

In option A.

[tex]\frac{f(2)}{f(1)}=\frac{6}{3}=2[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{9}{6}=\frac{3}{2}[/tex]

[tex]2\neq \frac{3}{2}[/tex]

Since the given table has different ratio, therefore it is not an exponential function. Option A is incorrect.

In option B.

[tex]\frac{f(2)}{f(1)}=\frac{6}{2}=3[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{18}{6}=3[/tex]

[tex]3=3[/tex]

Since the given table has common ratio, therefore it is an exponential function. Option B is correct.

In option C.

[tex]\frac{f(2)}{f(1)}=\frac{22}{10}=\frac{11}{5}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{34}{22}=\frac{17}{11}[/tex]

[tex]\frac{11}{5}\neq \frac{17}{11}[/tex]

Since the given table has different ratio, therefore it is not an exponential function. Option C is incorrect.

In option D.

[tex]\frac{f(2)}{f(1)}=\frac{8}{7}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{9}{8}[/tex]

[tex]\frac{8}{7}\neq \frac{9}{8}[/tex]

Since the given table has different ratio, therefore it is not an exponential function. Option D is incorrect.

Answer:

Table B represents an exponential function.

Step-by-step explanation:

An exponential function is a function which has common ratio. Using this fact we will evaluate the functions given in the form of a table.

Table A.

f(1) = 3

f(2) = 6

f(3) = 9

Now [tex]\frac{f(2)}{f(1)}=\frac{6}{3}=\frac{2}{1}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{9}{6}=\frac{3}{2}[/tex]

Ratios are not equal so it's not an exponential function.

Table B.

f(1) = 2

f(2) = 6

f(3) = 18

[tex]\frac{f(2)}{f(1)}=\frac{6}{2}=\frac{3}{1}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{18}{6}=\frac{3}{1}[/tex]

Here ratios are same therefore it's an exponential function.

Table C.

f(1) = 10

f(2) = 22

f(3) = 34

[tex]\frac{f(2)}{f(1)}=\frac{22}{10}=\frac{11}{5}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{34}{22}=\frac{17}{11}[/tex]

Ratios are not equal therefore it's not an exponential function.

Table D.

f(1) = 7

f(2) = 8

f(3) = 9

[tex]\frac{f(2)}{f(1)}=\frac{8}{7}[/tex]

[tex]\frac{f(3)}{f(2)}=\frac{9}{8}[/tex]

Ratios are not equal so it's not an exponential function.

Therefore Table B is the correct option.