Respuesta :
To write 2+2i into polar form we proceed as follows:
2+2i
simplifying the above we get
2(1+i)
dividing through above through by √2
=2*√2(1/√2+i/√2)
but
1/√2=cos (π/4)=sin (π/4)
thus our expression will be:
=2√2(cos (π/4)+isin (π/4))
2+2i
simplifying the above we get
2(1+i)
dividing through above through by √2
=2*√2(1/√2+i/√2)
but
1/√2=cos (π/4)=sin (π/4)
thus our expression will be:
=2√2(cos (π/4)+isin (π/4))
Answer:
[tex]z=2\sqrt{2}(cos{\frac{\pi}{4}}+isin{\frac{\pi}{4}})[/tex]
Step-by-step explanation:
The given complex number is:
[tex]2+2i[/tex]
Now, the polar from of the complex number [tex]z=a+ib[/tex] is [tex]z=r(cos{\theta}+isin{\theta})[/tex].
Finding the absolute value of r:
[tex]r=|z|={\sqrt{2^2+2^2}[/tex]
[tex]r=\sqrt8[/tex]
[tex]r=2\sqrt{2}[/tex]
Now, find the value of argument,
Using formula, [tex]{\theta}=tan^{-1}(\frac{b}{a})[/tex]
[tex]{\theta}=tan^{-1}({\frac{2}{2})[/tex]
[tex]{\theta}=tan^{-1}(1)[/tex]
[tex]{\theta}={\frac{\pi}{4}}[/tex]
Thus, the polar form is:
[tex]z=2\sqrt{2}(cos{\frac{\pi}{4}}+isin{\frac{\pi}{4}})[/tex]
which is the required polar form.