Respuesta :
To find the difference, we are going to destroy the parenthesis first, and then, we are going to perform the operations. Remember that to destroy a parenthesis preceded by a negative sign (-), you should change the signs of the factors inside the parenthesis:
[tex] \frac{2s}{s^2-4s+4} -( \frac{4}{s^2-4s+4} )[/tex]
[tex]\frac{2s}{s^2-4s+4} -\frac{4}{s^2-4s+4}= \frac{2s-4}{s^2-4s+4} [/tex]
Now we can factor both numerator and denominator and simplify:
[tex]\frac{2s-4}{s^2-4s+4} = \frac{2(s-2)}{(s-2)^2} = \frac{2}{s-2} [/tex]
We can conclude that the difference in simplest form is: [tex] \frac{2}{s-2} [/tex]
[tex] \frac{2s}{s^2-4s+4} -( \frac{4}{s^2-4s+4} )[/tex]
[tex]\frac{2s}{s^2-4s+4} -\frac{4}{s^2-4s+4}= \frac{2s-4}{s^2-4s+4} [/tex]
Now we can factor both numerator and denominator and simplify:
[tex]\frac{2s-4}{s^2-4s+4} = \frac{2(s-2)}{(s-2)^2} = \frac{2}{s-2} [/tex]
We can conclude that the difference in simplest form is: [tex] \frac{2}{s-2} [/tex]
To get started, combine -4s+4 with 4s - 4. Result: 0. That leaves
2s 4 2(s+2)
------ - ------- = ------------
s^2 s^2 s^2
2s 4 2(s+2)
------ - ------- = ------------
s^2 s^2 s^2