write an equation of an ellipse in standard form with the center at the origin and a height of 3 units and width of 1 unit

Respuesta :

check the picture below.

notice, the ellipse is taller than it's wider, meaning the major axis is over the vertical, meaning the "a" component will go with the fraction with the "y" variable,

[tex]\bf \textit{ellipse, vertical major axis} \\\\ \cfrac{(x- h)^2}{ b^2}+\cfrac{(y- k)^2}{ a^2}=1\qquad \begin{cases} h=0\\ k=0\\ b=\frac{1}{2}\\\\ a=\frac{3}{2} \end{cases} \\\\\\ \cfrac{(x- 0)^2}{ \left( \frac{1}{2} \right)^2}+\cfrac{(y- 0)^2}{ \left( \frac{3}{2} \right)^2}=1\implies \cfrac{x^2}{\frac{1}{4}}+\cfrac{y^2}{\frac{9}{4}}=1\implies \cfrac{4x^2}{1}+\cfrac{4y^2}{9}=1 \\\\\\ 4x^2+\cfrac{4y^2}{9}=1[/tex]
Ver imagen jdoe0001