Respuesta :
ANSWER
[tex]{ \sec}(e) = \pm \: \sqrt{\frac{11}{8} } [/tex]
EXPLANATION
We use the Pythagorean Identity,
[tex] { \sec}^{2} (e) = 1 + { \tan}^{2} (e)[/tex]
It was given that,
[tex] { \tan}^{2} (e) = \frac{3}{8} [/tex]
We substitute the values into the identity to obtain,
[tex] { \sec}^{2} (e) = 1 + \frac{3}{8} [/tex]
[tex]{ \sec}^{2} (e) = \frac{11}{8} [/tex]
We take square root of both sides to get,
[tex]{ \sec}(e) = \pm \: \sqrt{\frac{11}{8} } [/tex]
Answer:
sec e = √(11/8) ⇒ answer B
Step-by-step explanation:
* Lets revise some identities in trigonometry
# sin²x + cos²x = 1
- Divide both sides by cos²x
∴ sin²x/cos²x + cos²x/cos²x = 1/cos²x
∵ sinx/cosx = tanx
∴ sin²x/cos²x = tan²x
∵ cos²x/cos²x = 1
∵ 1/cosx = secx
∴ 1/cos²x = sec²x
* Now lets write the new identity
# tan²x + 1 = sec²x
- Let x = e
∴ tan²e + 1 = sec²e
- Substitute the value of tan²e in the identity
∵ tan²e = 3/8
∴ 3/8 + 1 = sec²e
- Change the 1 to the fraction 8/8
∴ 3/8 + 8/8 = sec²e ⇒ add the fractions
∴ 11/8 = sec²e
- Take square root for the two sides to find sec e
∴ sec e = √(11/8)
∴ The answer is B