Answer:
The measure of angle [tex]6[/tex] is [tex]20\°[/tex]
The measure of angle [tex]5[/tex] is [tex]70\°[/tex]
Angles [tex]1[/tex] and [tex]4[/tex] are supplementary
Step-by-step explanation:
we have that
[tex]m<3=(2x+6)\°[/tex]
so
For [tex]x=7[/tex]
[tex]m<3=(2(7)+6)\°=20\°[/tex]
Statements
Verify each statement
case A) The measure of angle [tex]6[/tex] is [tex]20\°[/tex]
The statement is True
we know that
[tex]m<6=m<3[/tex] ------> by vertical angles
we have that
[tex]m<3=20\°[/tex]
so
[tex]m<6=20\°[/tex]
case B) The measure of angle [tex]5[/tex] is [tex]70\°[/tex]
The statement is True
we know that
[tex]m<5+m<6=90\°[/tex] ------> by complementary angles
Substitute the value of m<6 and solve for m>5
[tex]20\°+m<5=90\°[/tex]
[tex]m<5=90\°-20\°=70\°[/tex]
case C) The measure of angle [tex]2[/tex] is [tex]80\°[/tex]
The statement is False
we know that
[tex]m<2=m<5[/tex] ------> by vertical angles
we have that
[tex]m<5=70\°[/tex]
so
[tex]m<2=70\°[/tex]
case D) Angles [tex]2[/tex] and [tex]5[/tex] are complementary
The statement is False
we know that
[tex]m<2=m<5[/tex] ------> by vertical angles
so
Angles [tex]2[/tex] and [tex]5[/tex] are vertical angles and its sum is not equal to [tex]90\°[/tex]
case E) Angles [tex]5[/tex] and [tex]6[/tex] are supplementary
The statement is False
we know that
[tex]m<5+m<6=90\°[/tex] ------> by complementary angles
so
Angles [tex]5[/tex] and [tex]6[/tex] are complementary angles
case F) Angles [tex]1[/tex] and [tex]4[/tex] are supplementary
The statement is True
we know that
[tex]m<1=m<4[/tex] ------> by vertical angles
[tex]m<1+m<4=180\°[/tex] ------> by supplementary angles
Because
[tex]m<1=90\°[/tex] and [tex]m<4=90\°[/tex]
so
Angles [tex]1[/tex] and [tex]4[/tex] are vertical angles and are supplementary angles