Respuesta :
The work done in lifting the steel beam is equal to its increase in gravitational potential energy:
[tex]W=mg \Delta h[/tex]
where
m is the mass of the steel beam
g is the gravitational acceleration
[tex]\Delta h[/tex] is the variation of height of the object
In this problem, m=600 kg and [tex]\Delta h=38.0 m[/tex], therefore the work done to lift the object is
[tex]W=(600 kg)(9.81 m/s^2)(38.0 m)=2.24 \cdot 10^5 J[/tex]
[tex]W=mg \Delta h[/tex]
where
m is the mass of the steel beam
g is the gravitational acceleration
[tex]\Delta h[/tex] is the variation of height of the object
In this problem, m=600 kg and [tex]\Delta h=38.0 m[/tex], therefore the work done to lift the object is
[tex]W=(600 kg)(9.81 m/s^2)(38.0 m)=2.24 \cdot 10^5 J[/tex]
From the calculations, we can see that the work done in the gravitational field is 228000J
What is work done?
The work done in a gravitational field depends on the height of the body hence we have;
Work done = mgh
m = 600 kg
g = 10 m/s^2
h = 38 m
Hence
W = 600 kg * 10 m/s^2 * 38 m = 228000J
Learn more about work done:https://brainly.com/question/13662169?
#SPJ5