Respuesta :

Try this solution:
0.2; 0.2*(-0.3); 0.2*(-0.3)*(-0.3); 0.2*(-0.3)*(-0.3)*(-0.3);... etc.
if the first term of this sequence is n=1, then only 'C' is the right answer: 
[tex]a_n=0.2*(-0.3)^{n-1}.[/tex]
The explicit formula for a Geometric Series can be written as:

[tex] a_{n}= a_{1}(r)^{n-1} [/tex]

Here, [tex]a_{1}= [/tex]First Term = 0.2

r = Common Ratio = - 0.06/0.2 = -0.3

Using these value in above formula, we can write the explicit formula of the sequence as:[tex]a_{n}=0.2(-0.3)^{n-1} [/tex]

So, option C gives the correct answer