===================================
[tex] \large \sf \underline{Problem:}[/tex]
- Two ladders are leaning against a wall as shown, making the same angle with the ground. The longer ladder reaches 40 feet up the wall. How far up the wall does the short ladder reach?
===================================
[tex] \large \sf \underline{Answer:}[/tex]
[tex]\huge \sf \qquad \quad{ 16 \: feet }[/tex]
===================================
[tex] \large \sf \underline{Solution:}[/tex]
Setting up the equation, establish the best proportion.
[tex] \large : \implies\qquad\large \sf\dfrac{x}{40} =\large\sf \dfrac{20}{50} [/tex]
Solving the equation, setting up the ratios and then cross multiply.
- [tex] \qquad\large \sf\dfrac{x}{40} = \large \sf \dfrac{20}{50} [/tex]
- [tex] \qquad\large \sf{(x)(50 \: ) = } \large \sf {(20)(40)}[/tex]
- [tex] \qquad\large \sf{50x \: = 800 }[/tex]
- [tex] \qquad\large \sf\dfrac{50x}{50} = \large \sf\dfrac{800}{50} [/tex]
- [tex] \qquad\large \sf{ \underline{ \underline{\pmb {x \: = \: 16 }}}}[/tex]
Hence, the short ladder reach the wall up to 16 feet.
===================================