Find the solutions to the equation below.

Check all the apply.

16x^2 - 64 = 0

A. x = 4

B. x = 2

C. x = -64

D. x = -2

E. x = -4

F. x = -8

Find the solutions to the equation below Check all the apply 16x2 64 0 A x 4 B x 2 C x 64 D x 2 E x 4 F x 8 class=

Respuesta :

Answer:

x = 2

x = - 2

Step-by-step explanation:

⇒ 1: Common Factor

  • 16x² - 64 = 0
  • 16(x² - 4) = 0

⇒ 2: Use the sum-product pattern

  • 16 (x² - 4) = 0
  • 16 (x² + 2x - 2x - 4) = 0

⇒ 3: Common factor from the two pairs

  • 16((x² + 2x) + (-2x - 4) = 0
  • 16(x(x+2)-2(x+2))=0

I dont feel like adding more details.

- rewrite in factored form

16(x(x+2)-2(x+2))=0

16(x-2)(x+2)=0

- create seperate equations

16(x-2)(x+2)=0

x-2=0

x+2=0

- solve

*rearrange and isolate the variable to find each solution

x = -2

x = 2

Answer:

B.x=2

Step-by-step explanation:

[tex]16x ^{2} - 64 = 0[/tex]

[tex]16x ^{2} = 64[/tex]

[tex]4 ^{2} {x}^{2} = {4}^{3} [/tex]

[tex] {x}^{2} = \frac{4 ^{3} }{4 ^{2} } [/tex]

[tex]x^{2} = 4[/tex]

[tex] \sqrt{x ^{2} } = \sqrt{4} [/tex]

[tex]x = 2[/tex]