Respuesta :
Answer:
A≈1206.37 cm²
Step-by-step explanation:
Radius = 12
Height = 16
Using the formulas
A= πrl+πr²
l = √r²+h²
A=πr(r + √h²+r²)=
π·12·(12+√16²+12²) ≈1206.37158cm²

Given :
- The height of a cone is 16 cm.
- Its base radius is 12 cm.
⠀
To Find :
- The curved surface area of the cone.
- The total surface area of the cone.
⠀
Solution :
- h = 16 cm
- r = 12 cm
Here,
- h is denoted as height.
- r is denoted as radius.
So, from l² = h² + r², we have :
⠀
- The slang height of the cone is represented by l.
⠀
[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ {h}^{2} + {r}^{2} \: }cm }}[/tex]
[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ {(16)}^{2} + {(12)}^{2} \: }cm }}[/tex]
[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ 256 + 144 } \: cm }}[/tex]
[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ 400} \: cm }}[/tex]
[tex]{\qquad \sf \dashrightarrow{ \: \bf l = 20 \: cm }}[/tex]
⠀
So, Curved surface area = [tex] \pi{rl}[/tex]
[tex]{\qquad \sf \dashrightarrow \: 3.14 \times 12 \times 20 \: {cm}^{2} }
[/tex]
[tex]{\qquad \bf \dashrightarrow \: 753.6 \: {cm}^{2} }
[/tex]
⠀
Further, total surface area = [tex] \pi{rl} + \pi{ {r}^{2} }[/tex]
[tex]{\qquad \sf \dashrightarrow \: (753.6 + 3.14 \times 12 \times 12 )\: {cm}^{2} }[/tex]
[tex]{\qquad \sf \dashrightarrow \: (753.6 + 452.16 )\: {cm}^{2} }[/tex]
[tex]{\qquad \bf \dashrightarrow \: 1205.76 \: {cm}^{2} }[/tex]