the height of a cone is 16 cm and its base radius is 12 cm. find the curved surface area and the total surface area of the cone​

Respuesta :

Answer:

A≈1206.37 cm²

Step-by-step explanation:

Radius = 12

Height = 16

Using the formulas

A= πrl+πr²

l = √r²+h²

A=πr(r + √h²+r²)=

π·12·(12+√16²+12²) ≈1206.37158cm²

Ver imagen abdullahfaraz3

Given :

  • The height of a cone is 16 cm.
  • Its base radius is 12 cm.

To Find :

  • The curved surface area of the cone.
  • The total surface area of the cone.

Solution :

  • h = 16 cm
  • r = 12 cm

Here,

  • h is denoted as height.
  • r is denoted as radius.

So, from l² = h² + r², we have :

  • The slang height of the cone is represented by l.

[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ {h}^{2} + {r}^{2} \: }cm }}[/tex]

[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ {(16)}^{2} + {(12)}^{2} \: }cm }}[/tex]

[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ 256 + 144 } \: cm }}[/tex]

[tex]{\qquad \sf \dashrightarrow{ \: l = \sqrt{ 400} \: cm }}[/tex]

[tex]{\qquad \sf \dashrightarrow{ \: \bf l = 20 \: cm }}[/tex]

So, Curved surface area = [tex] \pi{rl}[/tex]

[tex]{\qquad \sf \dashrightarrow \: 3.14 \times 12 \times 20 \: {cm}^{2} }

[/tex]

[tex]{\qquad \bf \dashrightarrow \: 753.6 \: {cm}^{2} }

[/tex]

Further, total surface area = [tex] \pi{rl} + \pi{ {r}^{2} }[/tex]

[tex]{\qquad \sf \dashrightarrow \: (753.6 + 3.14 \times 12 \times 12 )\: {cm}^{2} }[/tex]

[tex]{\qquad \sf \dashrightarrow \: (753.6 + 452.16 )\: {cm}^{2} }[/tex]

[tex]{\qquad \bf \dashrightarrow \: 1205.76 \: {cm}^{2} }[/tex]