Match each inequality to its solution.

Drag the tiles to the correct boxes. Not all tiles will be used.

Tiles
Pairs
arrowBoth
arrowBoth
arrowBoth
arrowBoth

Match each inequality to its solution Drag the tiles to the correct boxes Not all tiles will be used Tiles Pairs arrowBoth arrowBoth arrowBoth arrowBoth class=

Respuesta :

Answer:

I attached a pic with the answers. Good luck! :)

Ver imagen tunchxz

The given inequalities can be evaluated using the rules of indices and

logarithms.

Correct responses:

  • 2·(5)ˣ > 250 [tex]\longrightarrow[/tex] x > 3
  • [tex]4 \cdot \left(\frac{1}{3} \right)^x < 36 \longrightarrow \underline{ x < -2}[/tex]
  • [tex]10 \cdot \left(\frac{1}{2} \right)^x > 80 \longrightarrow \underline{x > -3 }[/tex]
  • [tex]\left(\frac{1}{2} \right) \cdot (6)^x < 18 \longrightarrow \underline{ x < 2}[/tex]

Methods used for the evaluation of the inequalities

(1) 2(5)ˣ > 250, gives;

[tex]5^x > \mathbf{\dfrac{250}{2}} = 125[/tex]

x·㏑5 > ㏑125

[tex]x > \dfrac{ln(125)}{ln(5)} = \dfrac{3 \cdot ln(5)}{ln(5)} = \mathbf{3}[/tex]

x > 3

  • 2·(5)ˣ > 250 [tex]\longrightarrow[/tex] x > 3

(2) [tex]\mathbf{4 \cdot \left(\frac{1}{3} \right)^x } < 36[/tex]

[tex]\left(\frac{1}{3} \right)^x < \dfrac{36}{4} = 9[/tex]

[tex]\mathbf{x \cdot ln \left(\frac{1}{3} \right)} < ln(9)[/tex]

[tex]x < \dfrac{ln(9)}{ln\left(\frac{1}{3} \right)} = \dfrac{2 \cdot ln(3)}{-ln(3)} = \mathbf{-2}[/tex]

x < -2

  • [tex]4 \cdot \left(\frac{1}{3} \right)^x < 36 \longrightarrow \underline{ x < -2}[/tex]

(3) [tex]\mathbf{10 \cdot \left(\frac{1}{2} \right)^x } > 80[/tex]

[tex]\left(\frac{1}{2} \right)^x > \mathbf{ \dfrac{80}{10} }= 8[/tex]

[tex]x \cdot ln \left(\frac{1}{2} \right) >ln(8)[/tex]

[tex]x > \mathbf{\dfrac{ln(8)}{ln\left(\frac{1}{2} \right)} }= \dfrac{3 \cdot ln(2)}{-1 \cdot ln(2)} = -3[/tex]

x > -3

  • [tex]10 \cdot \left(\frac{1}{2} \right)^x > 80 \longrightarrow \underline{x > -3}[/tex]

(4) [tex]\mathbf{\left(\frac{1}{2} \right) \cdot (6)^x} < 18[/tex]

[tex]6^x < \dfrac{18}{\dfrac{1}{2} } = \mathbf{36}[/tex]

< 36 = 6²

6ˣ < 6²

x < 2

  • [tex]\left(\frac{1}{2} \right) \cdot (6)^x < 18 \longrightarrow \underline{x < 2}[/tex]

Learn more about logarithm and the rules of indices here:

https://brainly.com/question/1979248

https://brainly.com/question/16620863

https://brainly.com/question/8959311