mayy024
contestada

given: sin theta= 2/3 and theta is in the second quadrant; evaluate the following expression. sin2theta

given sin theta 23 and theta is in the second quadrant evaluate the following expression sin2theta class=

Respuesta :

The value of [tex]\sin(2\theta)[/tex] is [tex]-\frac {-4\sqrt 3 }9[/tex]

Sine ratio

The sine ratio is given as:

[tex]\sin(\theta) = \frac23[/tex]

Trigonometry

In trigonometry, we have the following ratio

[tex]\sin^2(\theta) + \cos^2(\theta) = 1[/tex]

Substitute [tex]\sin(\theta) = \frac23[/tex] in the above equation

[tex]\frac 23 + \cos^2(\theta) = 1[/tex]

Collect like terms

[tex]\cos^2(\theta) = 1 -\frac 23[/tex]

Evaluate

[tex]\cos^2(\theta) =\frac 13[/tex]

Take square roots

[tex]\cos(\theta) =\pm\frac 1{\sqrt 3 }[/tex]

Rationalize

[tex]\cos(\theta) =\pm\frac {\sqrt 3 }3[/tex]

From the question, [tex]\theta[/tex] is in the second quadrant, and cosine is negative.

So, we have:

[tex]\cos(\theta) =-\frac {\sqrt 3 }3[/tex]

In trigonometry, we have:

[tex]\sin(2\theta) = 2\sin(\theta)\cos(\theta)[/tex]

So, we have:

[tex]\sin(2\theta) = 2\times \frac 23 \times -\frac {\sqrt 3 }3[/tex]

[tex]\sin(2\theta) = -\frac {-4\sqrt 3 }9[/tex]

Hence, the value of [tex]\sin(2\theta)[/tex] is [tex]-\frac {-4\sqrt 3 }9[/tex]

Read more about trigonometry ratios at:

https://brainly.com/question/10417664