Respuesta :

Answer:

[tex]y = -x - 7[/tex].

Step-by-step explanation:

Slope of the given line segment:

[tex]\begin{aligned} m_{1} = \frac{(-5) - (-1)}{(-6) - (-2)} = 1\end{aligned}[/tex].

The slope of any line perpendicular to this line segment would be:

[tex]\begin{aligned}m_{2} &= \frac{-1}{m_{1}} = -1\end{aligned}[/tex].

Midpoint of the given line segment:

[tex]\displaystyle \left(\frac{(-2) + (-6)}{2},\, \frac{(-1) + (-5)}{2}\right)[/tex].

Simplifies to get:

[tex](-4,\, -3)[/tex].

Find the equation of the perpendicular bisector in point-slope form and simplify.

[tex]y - (-3) = (-1)\, (x - (-4))[/tex].

[tex]y + 3 = -x - 4[/tex].

[tex]y = -x - 7[/tex].