Respuesta :
Answer:
Let two consecutive multiples of 3 be x and (x+3)
A/q,
x * (x+3) = 648
➡ x² + 3x = 648
➡ x² + 3x -648 = 0
➡ x² + 27x - 24x -648 = 0
➡ x ( x + 27 ) -24 ( x +27)
➡ ( x - 24) ( x + 27)
➡ x = 24 and x = -27
so, we take x = 24.
Required multiples of 3
➡ x = 24
➡ x +3 = 24+3 = 27.
Answer:
The three consecutive multiples are 210, 216, 222
Step-by-step explanation:
3 consecutive multiples of 6 be : 6n , 6n + 6 , 6n + 12
Given sum of these 3 numbers is = 648
That is ,
6n + 6n + 6 + 6n + 12 = 648
18 n + 18 = 648
18n = 648 - 18
18 n = 630
n = 35
Therefore the three consecutive multiples are :
6 x 35 , 6 x 35 + 6, 6 x 35 + 12
210 , 210 + 6 , 210 + 12
210 , 216, 222