Answer:
[tex]98.25^{\circ}[/tex]
Step-by-step explanation:
[tex]a=3\ \text{feet}[/tex]
[tex]b=4\ \text{feet}[/tex]
[tex]c=5+\dfrac{4}{12}=\dfrac{16}{3}\ \text{feet}[/tex]
[tex]\theta[/tex] = Angle between [tex]a[/tex] and [tex]b[/tex]
From cosine rule we have
[tex]c^2=a^2+b^2-2ab\cos \theta\\\Rightarrow \theta=\cos^{-1}(\dfrac{a^2+b^2-c^2}{2ab})\\\Rightarrow \theta=\cos^{-1}(\dfrac{3^2+4^2-(\dfrac{16}{3})^2}{2\times 3\times 4})\\\Rightarrow \theta=98.25^{\circ}[/tex]
The angle between the walls is [tex]98.25^{\circ}[/tex].