Which method would be appropriate to factor the polynomial below. 55x^3-40x^2 -Difference of Squares -Basic Trinomial Factoring -AC Method -Sums of Cubes -Greatest Common Factor -Factors by grouping

Respuesta :

Answer:

Greatest Common Factor

Step-by-step explanation:

Let [tex]55\cdot x^{3}-40\cdot x^{2}[/tex], we proceed to demonstrate the appropriate form to factor the polynomial:

1) [tex]55\cdot x^{3}-40\cdot x^{2}[/tex] Given.

2) [tex](5\cdot 11)\cdot (x^2\cdot x) +[5\cdot (-8)]\cdot x^{2}[/tex] Definition of multiplication and subtraction/[tex]a^{b+c} = a^{b}\cdot a^{c }[/tex]/[tex]-a\cdot b = (-a)\cdot b[/tex]/Associative property

3) [tex](5\cdot x^{2})\cdot (11\cdot x)+ (5\cdot x^{2})\cdot (-8)[/tex] Commutative and associative properties

4) [tex]5\cdot x^{2}\cdot (11\cdot x-8)[/tex] Distributive property/Definition of subtraction/Result

Hence, we conclude that this polynomial can be factored by Greatest Common Factor.