The vector (3, -7) is rotated by an angle of 3pi/4 radians and then reflected across the y-axis.

If the resulting vector is (a/b), then a =

and b =

Respuesta :

Answer:

[tex]a = 2\sqrt{2}[/tex] and [tex]b = 5\sqrt{2}[/tex].

Step-by-step explanation:

The resulting vector is the product of the input and rotation vectors. That is:

[tex]\vec R = \left[\begin{array}{ccc}\cos \theta&\ -\sin \theta\\ \sin \theta&\cos \theta\end{array}\right] \left[\begin{array}{ccc}3\\-7\end{array}\right][/tex]

[tex]\vec R = \left[\begin{array}{ccc}3\cdot \cos \theta + 7 \cdot \sin \theta\\ 3\cdot \sin \theta - 7 \cdot \cos \theta\end{array}\right][/tex]

Now, the resulting vector is determined by evaluating in given angle:

[tex]\theta = \frac{3\pi}{4}[/tex]

[tex]\vec R = \left[\begin{array}{ccc} 2\sqrt{2}\\ 5\sqrt{2}\end{array}\right][/tex]

The resulting vector is [tex](2\sqrt{2} , 5\sqrt{2})[/tex]. Then, [tex]a = 2\sqrt{2}[/tex] and [tex]b = 5\sqrt{2}[/tex].