Use the quadratic formula to find the roots of y = x2 + 5x + 6:
x = 2 and x = 3
x = 2 and x = -3
x = -2 and x = 3
x = -2 and x = -3
*must show work to receive credit*

Respuesta :

Answer:

x = -2 and x = -3

Step-by-step explanation:

It is required to find the roots of the equation. The general quadratic equation is :

[tex]ax^2+bx+c=0[/tex]                                                      

The solution of above equation is:

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

The given equation is :

[tex]x^2+5x+6=0[/tex]

Its solutions are :

[tex]x=\dfrac{-b+ \sqrt{b^2-4ac} }{2a},\dfrac{-b- \sqrt{b^2-4ac} }{2a}[/tex]

Here, a = 1, b = 5 and c = 6

[tex]x=\dfrac{-5+ \sqrt{(5)^2-4\times 1\times 6} }{2\times 1},\dfrac{-5- \sqrt{(5)^2-4\times 1\times 6} }{2\times 1}\\\\x=-2,-3[/tex]

So, the values of x are -2 and -3. Hence, the correct option is (d).