Respuesta :

Answer:

The value of mHLK will be "(204)°".

Step-by-step explanation:

The given values are:

mJI = (3x+2)°

mHLK = (15x-36)°

and,

m∠HML = (8x-1)°

then,

mHLK = ?

Now,

By using chord-chord formula of angle, we get

[tex]mHMK=\frac{1}{2}(mJL+mHLK)[/tex]

On putting the values in the above formula, we get

⇒  [tex](8x-1)=\frac{1}{2}(15x-36+3x+2)[/tex]

On applying cross-multiplication, we get

⇒  [tex]2(8x-1)=18x-34[/tex]

⇒  [tex]16x-2=18x-34[/tex]

On subtracting "18x" from both sides, we get

⇒  [tex]16x-2-18x=18x-34-18x[/tex]

⇒  [tex]-2x-2=-34[/tex]

On adding "2" both sides, we get

⇒  [tex]-2x=-34+2[/tex]

⇒  [tex]-2x=-32[/tex]

⇒  [tex]x=\frac{32}{2}[/tex]

⇒  [tex]x=16[/tex]

On putting the value of "x" in mHLK = (15x-36)°, we get

⇒ (15x-36)° = (15×16-36)°

⇒                = (240-36)°

⇒                = (204)°

So that mHLK = (204)°