In △XYZ , XZ=8 , YZ=5 , and XY=7 . What is the area of the triangle? Enter your answer, in simplified radical form, in the box.

Respuesta :

Answer:

The area of the triangle is [tex]10\sqrt{3}[/tex]

Step-by-step explanation:

Let us use Heron's Formula for the area of a triangle

[tex]Area=\sqrt{p(p-a)(p-b)(p-c)}[/tex] , where

  • a, b, and c are the length of the three sides of the triangle
  • [tex]p=\frac{a+b+c}{2}[/tex]

In Δ XYZ

∵ XZ = 8, YZ = 5, XY = 7

- At first find p

∵ [tex]p=\frac{XY+YZ+XZ}{2}[/tex]

∴ [tex]p=\frac{7+5+8}{2}=\frac{20}{2}[/tex]

p = 10

∵ [tex]Area=\sqrt{p(p-XY)(p-YZ)(p-XZ)}[/tex]

- Substitute the values of p, XY, YZ, and XZ in the rule above

∴ [tex]Area=\sqrt{10(10-7)(10-5)(10-8)}[/tex]

∴ [tex]Area=\sqrt{10(3)(5)(2)}[/tex]

∴ [tex]Area=\sqrt{300}[/tex]

- Simplify the root

∴ [tex]Area=10\sqrt{3}[/tex]

The area of the triangle is [tex]10\sqrt{3}[/tex]