The acid-dissociation constant for benzoic acid (C6H5COOH) is 6.3×10−5. Calculate the equilibrium concentration of H3O+ in the solution if the initial concentration of C6H5COOH is 7.0×10−2 M .

Respuesta :

Answer : The equilibrium concentration of [tex]H_3O^+[/tex] in the solution is, [tex]2.1\times 10^{-3}M[/tex]

Explanation :

The dissociation of acid reaction is:

                       [tex]C_6H_5COOH+H_2O\rightarrow H_3O^++C_6H_5COO^-[/tex]

Initial conc.        c                                 0                0

At eqm.             c-x                                 x                x

Given:

c = [tex]7.0\times 10^{-2}M[/tex]

[tex]K_a=6.3\times 10^{-5}[/tex]

The expression of dissociation constant of acid is:

[tex]K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}[/tex]

[tex]K_a=\frac{(x)\times (x)}{(c-x)}[/tex]

Now put all the given values in this expression, we get:

[tex]6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}[/tex]

[tex]x=2.1\times 10^{-3}M[/tex]

Thus, the equilibrium concentration of [tex]H_3O^+[/tex] in the solution is, [tex]2.1\times 10^{-3}M[/tex]