Answer:
Explanation:
a. Given that:
[tex]m-[/tex] mass of first & second piece, [tex]3m-[/tex]mass of 3rd piece,[tex]\bar v_1[/tex]-velocity of first piece([tex]-23\dot i \ m/s[/tex]) and [tex]\bar v_2[/tex] as velocity of 2nd piece ([tex]-23\dot j \ m/s[/tex])
Let [tex]\bar v_3[/tex] be velocity of 3rd piece=?
#Vessel is at rest before explosion. Considering conservation of linear momentum:
[tex]m\bar v_1 +m\bar v_2 +3m \bar v_3=0[/tex] #Dividing both sides by [tex]m, m\neq 0[/tex]
[tex]\bar v_1+ \bar v_2 +3\bar v_3=0\\3\bar v_3=-(\bar v_1 +\bar v_2)\\\bar v_3=-\frac{1}{3}(\bar v_1 +\bar v_2)[/tex]
#Plug the[tex]\bar v_1 ,\bar v_2[/tex] values:
[tex]\bar v_3=-\frac{1}{3}(-23\dot i -23\dot j)=\frac{1}{3}(23\dot i +23\dot j)[/tex]
#So the magnitude of the third piece is:
[tex]|\bar v_3|=\sqrt{(23/3)^2+(23/3)^2}\\=10.84m/s[/tex]
Magnitude of the 3rd piece is 10.84 m/s
b. To find direction of the magnitude (as an angle relative to the [tex]x[/tex]-axis), we find [tex]\angle \theta[/tex]. The angle is obtained by getting the tan inverse as:
[tex]\theta=tan^-^1(\frac{23/3}{23/3})\\=45\textdegree[/tex]
-The direction of the magnitude (angle relative to the x-axis) is 45°